您现在的位置: 首页 >> 师资队伍 >> 教师系列 >>



刘志峰


发布日期:2025-03-24

情况简介

姓 名:刘志峰6843982571ab421a920fb8ae3ba82f35.jpg

别:男

称:讲师

导师类别:硕士生导师

招生专业:控制科学与工程、电子信息、仪器科学与技术

研究方向:计算智能算法设计、综合能源系统分析、非平稳时间序列预测


教育及工作经历

 2022.9 - 至今 天津科技大学 电子信息与自动化学院  讲师/硕士生导师

 2024.6 - 至今 天津大学  电气自动化与信息工程学院 博士后(贾宏杰教授)

 2016.9-2022.6 河北工业大学 电气工程学院   博士(硕博连读)

 2012.9-2016.6 河北师范大学 电子系    本科


代表性科研论文

第一作者或通讯作者文章

[1]. Liu, Zhi-Feng*., Huang, Y. H., Kang, Q., et al. (2024). Optimal operation of CCHP system with duality operation strategy considering hydrogen trading and carbon capture. Sustainable Cities and Society (A1 TOP IF: 10.5), 115, 105881.

[2]. Liu, Zhi-Feng., Liu, Y. Y., Chen, X. R., et al. (2024). A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting. Applied Energy (A1 TOP IF: 10.1), 360, 122785.

[3]. Liu, Zhi-Feng., Chen, X. R., Huang, Y. H. et al. (2024). A novel bimodal feature fusion network-based deep learning model with intelligent fusion gate mechanism for short-term photovoltaic power point-interval forecasting. Energy (A1 TOP IF: 9), 303, 131947.

[4]. Liu, Zhi-Feng., Zhao, S. X., Zhang, X. J., et al. (2023). Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method. Renewable Energy (A1 TOP IF: 9), 219, 119379.

[5]. Liu, Zhi-Feng., Zhao, S. X., You G. D., et al. (2023). Improving the economic and environmental benefits of the energy system: A novel hybrid economic emission dispatch considering clean energy power uncertainty. Energy (A1 TOP IF: 9), 285, 128668.

[6]. Liu, Zhi-Feng., Li, L. L., Liu Y. W., et al. (2021). Dynamic economic emission dispatch considering renewable energy generation: a novel multi-objective optimization approach. Energy (A1 TOP IF: 8.857), 235, 121407.

[7]. Liu, Zhi-Feng., Luo, S. F., Tseng, M. L., et al. (2021). Short-term photovoltaic power prediction on modal reconstruction: A novel hybrid model approach. Sustainable Energy Technologies and Assessments(A2 TOP IF: 7.632), 45, 101048.

[8]. Liu, Zhi-Feng., Li, L. L., Tseng, M. L., et al. (2020). Prediction short-term photovoltaic power using improved chicken swarm optimizer - extreme learning machine model. Journal of Cleaner Production (A1 TOP IF: 9.297), 248, 119272.

第二作者文章

[1]. Li, L. L., Liu, Zhi-Feng., Tseng, M. L. et al. (2021). Using enhanced crow search algorithm optimization-extreme learning machine model to forecast short-term wind power. Expert Systems with Applications (A1 TOP; IF: 8.665), 184, 115579.

[2]. Li, L. L., Liu, Zhi-Feng., Tseng, M. L., et al. (2021). Improved tunicate swarm algorithm: solving the dynamic economic emission dispatch problems. Applied Soft Computing (A1 TOP; IF: 8.263), 108, 107504.【ESI前1%高被引论文】

[3]. Li, L. L., Liu, Zhi-Feng., Tseng, M. L., et al. (2019). Enhancing the Lithium-ion battery life predictability using a hybrid method. Applied Soft Computing (A2 IF: 4.873), 74, 110-121.

[4]. Li, L. L., Liu, Zhi-Feng., Tseng, M. L., et al. (2019). Prediction of IGBT power module remaining lifetime using the aging state approach. Microelectronics Reliability (A4 IF: 1.535), 102, 10.

[5]. Li, L. L., Liu, Zhi-Feng., & Wang, C. H. (2020). The Open-Circuit Voltage Characteristic and State of Charge Estimation for Lithium-Ion Batteries Based on an Improved Estimation Algorithm. Journal of Testing and Evaluation (A4 IF: 0.877),48(2), 1712-1730.


在研或已完成的科研项目

[1]. 企业横向,电动汽车充放电时序特性模型编程加工,主持。

[2]. 企业横向,复杂工况下电动汽车中锂离子电池健康状态评估技术研究,主持。

[3]. 企业横向,供电系统负荷预测与聚合策略研究,主持。

[4]. 河北省博士研究生创新资助项目,风光储微网关键性能参数预测与运行成本优化方法研究,主持。

[5]. 河北省自然科学基金,非平稳随机时间序列多分辨预测及在新能源领域的应用,参与。


科研专利:

[1]. 一种基于人工智能算法与新能源发电惩罚机制的优化调度方法,发明新型专利。

[2]. 一种含最优动态并网系数策略的风--储能源系统优化调度方法,发明新型专利。

[3]. 一种海上风能-波浪能联合发电装置,发明新型专利。

[4]. 电动汽车中锂离子动力电池的温度自动调节系统,发明新型专利。


奖励:

天津市科技进步二等奖(排名第6


学术兼职:

[1]. Energies期刊(SCI)特刊客座编辑;

[2]. CSCIED科技核心评价数据库评委;

[3]. 期刊审稿人:Applied EnergyA1 TOP)、Expert Systems with ApplicationsA1 TOP)、EnergyA1 TOP)、CitiesA1 TOP)、Journal of Energy StorageA2 TOP)、Sustainable Energy Technologies and AssessmentsA2 TOP)、Solar EnergyA2 TOP


联系方式

办公地点:电子信息与自动化学院(滨海校区西院11号楼206室)

通讯地址(邮编):天津开发区第十三大街29号天津科技大学(300457

E-MAILliuzhifeng@tust.edu.cn