您现在的位置: 首页 >> 研究生教育 >> 院外导师 >> 仓诗建 发布日期:2021-04-16
姓名:仓诗建 性别:男 职务、职称: 副教授 导师类别:硕导 二、社会兼职 1. 担任国内期刊计算物理的客座编辑; 2. 担任国际期刊Complexity的特邀编辑; 3. 担任物理学报、Journal of Control and Decision(控制与决策英文版)、南京理工大学学报、计算物理等国内期刊审稿人; 4. 担任Nonlinear Dynamics、Chaos、Communications in Nonlinear Science and Numerical Simulation、IEEE Access、IEEE Transactions on Circuits and Systems、Plos One、Chinese Physics B、International Journal of Bifurcation and Chaos、Chaos, Solitons & Fractals、AEUE - International Journal of Electronics and Communications、European Physical Journal、Applied Mathematical Modeling等国际期刊审稿人。 三、研究方向 1. 控制理论与应用:人工智能、无模型控制、模糊和神经网络控制、电力系统稳定性及控制。 2. 信号与系统:数字信号处理、数字滤波器设计、视频和图像信号处理。 3. 非线性动力学:应用分形理论、混沌理论、动力系统稳定性及控制、神经动力学。 四、科研情况(在研和已完成主要科研项目及成果、获奖情况) 1. 国家自然科学青年基金项目(编号:11202148),第二完成人。 2. 国家自然科学面上项目(编号:61873186),第二完成人。 3. 天津市科委项目(编号:17KPHDSF00210),主持人。 4. 天津市艺术科学规划项目(编号:D12022),主持人。 五、学术成果(第一作者或通讯作者文章) [1] Cang, S*, Kang, Z., & Wang, Z. Pseudo-random number generator based on a generalized conservative Sprott-A system. Nonlinear Dynamics, 2021, 1-18.(SCI/EI检索) [2] Cang S*, Li Y, Kang Z, et al. Generating multicluster conservative chaotic flows from a generalized Sprott-A system. Chaos, Solitons & Fractals, 2020, 133: 109651. (SCI/EI检索) [3] Cang S*, Li Y, Xue W, et al. Conservative chaos and invariant tori in the modified Sprott A system . Nonlinear Dynamics, 2020, 99(2): 1699-1708.(SCI/EI检索) [4] Cang S*, Li Y, Kang Z, et al. A generic method for constructing n-fold covers of 3D conservative chaotic systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(3): 033103. (SCI检索) [5] Zhang R, Wu A, Wang Z, Cang S*. Chaotic and subharmonic oscillations in a DC–DC boost converter with PWM voltage–current hybrid controller and parallel MR load. Nonlinear Dynamics, 2020, 99(2): 1321-1339.(SCI/EI检索) [6] Cang S*, Li Y, Zhang R, et al. Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points . Nonlinear Dynamics, 2019, 95(1): 381-390.(SCI/EI检索) [7] Xue W, Zhang M, Liu S, Cang S*. Mechanical analysis and ultimate boundary estimation of the chaotic permanent magnet synchronous motor. Journal of the Franklin Institute, 2019, 356(10): 5378-5394.(SCI/EI检索) [8] Cang S*, Wu A, Zhang R, et al. Conservative chaos in a class of nonconservative systems: Theoretical analysis and numerical demonstrations. International Journal of Bifurcation and Chaos, 2018, 28(07): 1850087. (SCI检索) [9] Zhang R, Wu A, Zhang S, Cang S*. Dynamical analysis and circuit implementation of a DC/DC single-stage boost converter with memristance load. Nonlinear Dynamics, 2018, 93(3): 1741-1755.(SCI/EI检索) [10] Wu A, Cang S*, Zhang R, et al. Hyperchaos in a conservative system with nonhyperbolic fixed points. Complexity, 2018, 2018.(SCI检索) [11] Cang S*, Li Y, Wang Z. Single crystal-lattice-shaped chaotic and quasi-periodic flows with time-reversible symmetry. International Journal of Bifurcation and Chaos, 2018, 28(13): 1830044. (SCI检索) [12] Cang S*, Wu A, Wang Z, et al. Four-dimensional autonomous dynamical systems with conservative flows: two-case study. Nonlinear Dynamics, 2017, 89(4): 2495-2508.(SCI/EI检索) [13] Cang S*, Wu A, Wang Z, et al. On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows. Chaos, Solitons & Fractals, 2017, 99: 45-51. (SCI/EI检索) [14] Cang S*, Wu A, Wang Z, et al. Distinguishing Lorenz and Chen systems based upon Hamiltonian energy theory . International Journal of Bifurcation and Chaos, 2017, 27(02): 1750024.(SCI检索) [15] Cang S*, Wu A, Wang Z, et al. Birth of one-to-four-wing chaotic attractors in a class of simplest three-dimensional continuous memristive systems. Nonlinear Dynamics, 2016, 83(4): 1987-2001. (SCI/EI检索) [16] Cang S*, Wu A, Wang Z, et al. A general method for exploring three-dimensional chaotic attractors with complicated topological structure based on the two-dimensional local vector field around equilibriums. Nonlinear Dynamics, 2016, 83(1-2): 1069-1078.(SCI/EI检索) [17] Wang C, Hu C, Han J, Cang S*. A new no-equilibrium chaotic system and its topological horseshoe chaos. Advances in Mathematical Physics, 2016. (SCI检索) [18] Xue W, Li Y, Cang S*, et al. Chaotic behaviour and circuit implementation of a fractional-order permanent magnet synchronous motor model. Journal of the franklin institute, 2015, 352(7): 2887-2898.(SCI/EI检索) [19] Cang S*, Wang Z, Chen Z, et al. Analytical and numerical investigation of a new Lorenz-like chaotic attractor with compound structures . Nonlinear Dynamics, 2014, 75(4): 745-760.(SCI/EI检索) [20] Wang Z, Cang S*, Wang Z, et al. A strange double-deck butterfly chaotic attractor from a permanent magnet synchronous motor with smooth air gap: numerical analysis and experimental observation. Abstract and Applied Analysis. Hindawi, 2014.(SCI检索) [21] Cang S*, Chen Z, Wang Z, et al. Projective synchronization of fractional–order memristive systems with different structures based on active control method . International Journal of Sensor Networks, 2013, 14(2): 102-108.(SCI检索) [22] Cang S*, Wang Z, Chen Z. Adaptive sliding mode controller design for projective synchronization of different chaotic systems with uncertain terms and external bounded disturbances . Journal of Applied Mathematics, 2013.(SCI检索) [23] Cang S*, Qi G, Chen Z. A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dynamics, 2010, 59(3): 515-527. (SCI/EI检索) [24] Cang S*, Chen Z, Wang Z, et al. Coexistence of multiple strange attractors governed by different initial conditions in a deterministic system. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(9): 671-678.(SCI检索) [25] Cang S*, Chen Z, Wu W. Circuit implementation and multiform intermittency in a hyper-chaotic model extended from the Lorenz system. Chinese Physics B, 2009, 18: 1792-1800.(SCI检索) [26] Cang S*, Chen Z, Yuan ZZ. Analysis of an on-off intermittency system with adjustable state levels. Kybernetika, 2008, 44(4): 455-468. (SCI检索) [27] Cang S*, Chen Z, Yuan ZZ. Analysis and circuit implementation of a new four-dimensional non-autonomous hyper-chaotic system. Acta Physica Sinica, 2008 (3): 1493-1501.(SCI/EI检索) 五、联系方式 办公地点:天津市河西区大沽南路1038号天津科技大学1号楼416室 电话:13516282245 通讯地址(邮编):300222 E-MAIL:csj98231@tust.edu.cn |